|
The Albula Railway ((ドイツ語:Albulabahn); (イタリア語:Ferrovia dell'Albula)) is a single track metre gauge railway line forming part of the so-called core network of the Rhaetian Railway (RhB), in the Canton of Graubünden, Switzerland. It links Thusis on the Hinterrhein ( above sea level) with the spa resort of St. Moritz in Engadine ( above sea level). Construction of the Albula Railway was begun in September 1898, the opening took place on 1 July 1903, and the extension to St. Moritz commenced operations on 10 July 1904. With its 55 bridges and 39 tunnels, the line is one of the most spectacular narrow gauge railways in the world. On 7 July 2008, the Albula Railway and the Bernina Railway, which also forms part of the RhB, were jointly recorded in the list of UNESCO World Heritage Sites, under the name ''Rhaetian Railway in the Albula / Bernina Landscapes''. The best known trains operating on the Albula Railway are the Glacier Express and the Bernina Express. == History == Up until 1890, the south east of Switzerland was extremely poorly served by railways. Alpine transit traffic was drawn to the Gotthard Railway, so that the construction of transcontinental railways in Graubünden appeared not to be economically viable. Only the success of the Landquart-Davos-Bahn (LD) led to a turning point. In 1895, the LD changed its name to ''Rhaetian Railway'' (RhB). Two years later, the people of Graubünden decided, in a referendum, that the RhB would come under state ownership. These two changes created suitable conditions for a rapid construction of further RhB lines, which were intended to open up large parts of the Canton. In 1890, the Davos hotelier Willem-Jan Holsboer proposed the construction of a rail link from Chur via Davos, and through a tunnel under the Scaletta Pass, to St Moritz, and then onwards via the Maloja Pass, to Chiavenna in Italy. Holsboer later had to abandon this planned ''Scalettabahn'', in favour of a route through what was to become the Albula Tunnel. In 1895, the Zurich railway pioneer Adolf Guyer-Zeller presented the idea of an ''Engadine-Orient-Railway'', which would have connected Chur, via Thusis and Engadine, and over the Fuorn Pass, with the Vinschgau and Trieste. Zeller planned this proposed route as a standard gauge line. It would have passed under the Albula Alps through a 12 km long tunnel from the mouth of the Val Tisch to the Inn Valley below Bever. As the Ofenbergbahn, the Engadine-Orient-Railway would also have cut a connection through to the Val Müstair. It was only on 30 June 1898 that the Federal Assembly in Bern finally decided on the construction of the Albula Railway. The Federal Assembly thereby also decided against another standard gauge transit railway, and a similarly contemplated railway over the Julier Pass. In 1896, there were only 20 km of standard gauge railway line in Graubünden - and 90 km of narrow gauge railways. (Incidentally, the length of the standard gauge line has remained unchanged to this day, apart from the construction of a new industrial spur line from Chur to Domat / Ems.) Priority was given to the construction of a rail connection to the spa at St Moritz, which at that time was a 14-hour stage coach ride distant from Chur, the terminus of the standard gauge line. After Thusis was reached from Chur, the construction of the Albula Railway began on 15 October 1898. Unlike the Bernina Railway, which was opened a good ten years later, and operated in fully electrified form right from the start, the Albula Railway was still a steam railway at its conception. Moreover, (and again unlike the Bernina Railway), it was intended to be universally available, particularly for the transport of goods. As the steam locomotives of the time were still not particularly powerful, and in order to permit the highest possible speeds, the maximum gradients were restricted to 3.5%, and the minimum curve radius was also generously defined. Thus, the Albula Railway, in the interests of maximising its effectiveness, did not test the technical bounds of an adhesion railway. However, such an architectural style required a variety of engineering structures. So, for example, the viaducts were exclusively solidly constructed. Especially problematical was the ascent of the valley between Bergün/Bravuogn and Preda, where, in a distance of 5 km as the crow flies, a difference in altitude of over 400 m needed to be overcome. To stay within the maximum gradient parameters, the project supervisor, Friedrich Hennings, devised an intricate alignment, which lengthened the line's formation by 12 km. Two curved tunnels, three spiral tunnels, and a number of bridges overcame the engineering problem, by winding the track around like the thread of a screw. On this part of the line, the construction of the 660 m long Rugnux Spiral Tunnels in particular led to problems, because the 4 °C cold mountain water hampered the activities of the workers. (詳細はwatershed between the Rhine and the Danube a few kilometres west of the Albula Pass. With its maximum elevation of above sea level, the tunnel is, after the Furka Tunnel, the second highest alpine tunnel in Switzerland. The creation of the tunnel was hampered by unusual problems caused by outflowing water, and these led to the bankruptcy of the building contractor. A total of 1,316 people were involved in the construction of the Albula Tunnel. Overall, there were 16 fatal accidents involving workers. At 03:00 hours on 29 May 1902, the breakthrough of the two tunnel leads was achieved, at a point from the north portal, and , from the south portal. On 1 July 1903, the opening of the section between Thusis and Celerina could be celebrated. As the RhB and the St Moritz municipality were still yet to reach agreement over the site of the St. Moritz station, the inauguration of the 3 km long remaining section had to be delayed to 10 July 1904. Shortages of coal during World War I prompted the RhB to grapple with the task of electrification. On 20 April 1919, the first section of the line to be electrified, the link between Bever and Filisur, was energised with the 11 kV 16 2/3 Hz alternating current system used on the Engadine line. On 15 October 1919, the extension to Thusis followed. Since 1930, the Glacier Express has followed the route of the Albula Railway. The Bernina Express was added after World War II. Both of these trains have since operated as spearheads of the Rhaetian Railway's legendary reputation as a railway company amongst rail fans from around the world. Since the line was equipped with a block safety system in 1969, remote monitoring of train traffic at most stations on the line has been possible. In 2005, the ''Rail Control Center'' in Landquart assumed the former tasks of the remote monitoring station at Filisur. The Bever substation was modernised in 1973. Successive extensions to the passing loops at the stations has lengthened them to over , the equivalent of an express train with 13 carriages. Since the end of the 1990s, the RhB has installed three short double track sections - at Thusis, at Filisur and below Preda - to make the hourly train crossings flow more smoothly. The remaining parts of the line are single track as before, and are still largely in their original configuration from 1904. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Albula Railway」の詳細全文を読む スポンサード リンク
|